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Abstract. A reliable quantification of greenhouse gas emissions is important for climate change mitigation strategies. Inverse

methods based on observations and atmospheric transport simulations can support emission quantification down to the national

scale, yet, they are often limited by the observing systems, transport model uncertainties, and inversion methodologies. Here,

we present a system for observation-based, regional methane flux estimation, which has the potential for long-term operational

support of national emission reporting. We apply this to Central Europe in 2021 with focus on Germany, where we distinguish5

emissions from different anthropogenic sectors. The atmospheric transport is calculated with the numerical weather prediction

model ICON–ART at 6.5 km resolution, sampling the meteorological uncertainty with a 12-member transport ensemble. We

use a priori fluxes from national reporting to facilitate the validation of reported fluxes. Posterior fluxes are estimated with a

modified synthesis inversion method, relying on observations from the Integrated Carbon Observation System (ICOS). Com-

pared to the a priori, we find a significant increase in methane emissions in Germany and in the Benelux. We estimate German10

methane emissions (32± 19)% higher than the anthropogenic emissions in the national inventory, and attribute this difference

mainly to the agricultural sector, although separation from Land Use, Land Use Change and Forestry (LULUCF) as well as

natural fluxes requires further research. The combination of an ensemble-enhanced numerical weather prediction model for

atmospheric transport and good observation coverage paves the way to sector-specific, observation-based national emission

estimates.15

1 Introduction

Reducing greenhouse gas (GHG) emissions is crucial for mitigating current anthropogenic global warming. UNFCCC (United

Nations Framework Convention on Climate Change) compliant national inventories and/or process models quantify anthro-

pogenic GHG emissions for the purpose of monitoring the effectiveness of mitigation as planned, e.g., in the Paris Agreement.

In addition to so-called “bottom-up” methods, atmospheric GHG concentration observations are used in “top-down” flux es-20

timations. The latter are complementary, as they are sensitive to the total fluxes (i.e., anthropogenic and natural) and provide

options for independent validation of a priori fluxes provided by inventories (IPCC et al., 2019). The usefulness of top-down es-
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timates has been demonstrated, e.g., for the United Kingdom (Manning et al., 2011), Switzerland (Henne et al., 2016), Europe

(Petrescu et al., 2023) and globally (Deng et al., 2022; Petrescu et al., 2024). Although research foundations for top-down meth-

ods have been developed in recent decades, see Janssens-Maenhout et al. (2020) and references therein, applications remain25

limited due to sparse observation coverage and representativeness, and most critically, due to transport model uncertainties

(Engelen et al., 2002; Gerbig et al., 2008). The latter is a well-known issue not solved yet (Munassar et al., 2023). Inversions

using satellite observations (e.g. Estrada et al., 2024) benefit from larger spatial observation coverage, but the uncertainties of

the observations are larger compared to in situ data and the influence on the inversion results was found smaller where in situ

coverage is good (Thompson et al., 2025). The benefits of increased model resolution (Agustí-Panareda et al., 2019; Bergam-30

aschi et al., 2022) can be reaped with regional high resolution modeling, and ensembles can cover parts of the meteorological

uncertainty (Steiner et al., 2024a). At short time scales, the regional model uncertainties will constitute the main uncertainty,

while at longer time scales, the boundary conditions become critical for tracer transport (Chen et al., 2019).

Regional top-down estimates of long-lived GHG can be based on different types of transport models. Lagrangian models

calculate trajectories from selected locations by moving with air parcels transported by the wind. They have been widely used35

for inversions of trace gases like halocarbons, nitrous oxide and methane (CH4) in European regions, see e.g., Stohl et al. (2009);

Ganesan et al. (2015); Henne et al. (2016). In contrast, Eulerian models – such as ICON–ART – continuously transport trace

gas concentrations through three-dimensional grid boxes. Although they are computationally more expensive for cases where

a relatively small number of trajectories would suffice, they become superior when the amount of data grows and, as Engelen

et al. (2002) pointed out, open the road for data assimilation methods as used in numerical weather prediction. Regardless40

whether Lagrangian or Eulerian or even combined approaches (Rigby et al., 2011) are applied, the top-down estimation requires

solving an inverse problem (Enting, 2002). Eulerian transport model based inversions may employ emission ensembles, as in

Steiner et al. (2024b) with a localized Kalman filter, and other data assimilation methods. Alternatively, the method of synthesis

inversion scales a set of a priori emission categories (Kaminski et al., 2001). Note that Meirink et al. (2008b) compare 4D-Var

and synthesis inversion methods.45

In this work, we present a modular system for regional top-down estimates of CH4 fluxes designed to validate national

inventories, including the discrimination of economic sectors such as agriculture and industry. We apply this method focusing

on German inventories (provided by Umweltbundesamt and Thünen Institute) for the year 2021 using in situ observations

collected by ICOS (ICOS RI, 2024). Atmospheric transport is simulated using the numerical weather prediction model ICON

(Zängl et al., 2015) extended with the module for Aerosol and Reactive Trace gases (ART) (Rieger et al., 2015; Schröter et al.,50

2018) with a spatial resolution of 6.5km. The model is combined with a synthesis inversion approach (Kaminski et al., 2001)

which is developed further to make use of the ensemble-estimated transport uncertainty. For minimizing transport errors, we

rely on the operational numerical weather prediction at Germany’s Meteorological Service (DWD) for meteorological initial

conditions, lateral boundaries and transport ensemble calculations. Further, we use the Copernicus Atmospheric Monitoring

Service (CAMS) for boundary conditions of methane, and compensate possible biases on the boundaries by deriving a cor-55

rection field. Benefiting from the numerical weather prediction model and spatially highly resolved a priori fluxes from the
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inventory agencies, we explore the basis for future operational top-down validation of national emission reporting, with special

emphasis on further use in Germany.

In Sect. 2, we explain the transport model and the inversion methodology, while leaving some technical details for the

appendices. Section 3 contains an overview of the utilized initial and boundary data as well as the a priori fluxes. Further,60

we describe the pre-processing of the observations used. Section 4 is dedicated to the details of the method concerning its

application for Germany. Section 5 contains the results for our example year 2021, together with the results of the validation

and sensitivity tests. The potential of the method is demonstrated by model performance tests using pseudo-observations with

known true emissions. In Sect. 6 we discuss limitations and capabilities of the method and compare to other studies, followed

by a conclusion in Sect. 7.65

2 Method

In the employed offline scaling inversion, we categorize the a priori fluxes and scale each flux category to optimize the agree-

ment between model prediction and observations. We start by defining flux categories which subdivide the fluxes by region and

sector. With the Eulerian transport model, the concentrations from each flux category are calculated separately at all grid cells

and time points. At the location and time of the observations, the model writes out the predicted concentrations from the flux70

category contributions and their sum is compared to the observed concentration. Our inversion makes use of the linear relation

between surface fluxes and concentrations in the atmosphere. The categorized fluxes are scaled to minimize the mismatch

between model prediction and observed concentrations. Thus, the inversion result consists of one scaling factor for each flux

category. The a priori fluxes multiplied by the scaling factors yield the a posteriori fluxes.

The described method relies on high quality model predictions as well as accurate concentration observations. Furthermore,75

we need to estimate the model uncertainty and error correlations to assess whether deviations between model and observations

contain information on the fluxes. To match these requirements, we have carefully chosen the configuration of the transport

model (Sect. 2.1). Also, selected observational data are employed to remedy model boundary effects and therefore improve the

overall model predictions (Sect. 2.2). In this section, we further introduce the Bayesian inversion framework (Sect. 2.3), the

model uncertainties (Sect. 2.4), and our strategy for dealing with strong plumes (Sect. 2.5).80

2.1 Transport model

The atmospheric transport is simulated using the numerical weather prediction model ICON (Zängl et al., 2015) with the ART

module (Rieger et al., 2015; Schröter et al., 2018). The model is run in limited area mode for a domain covering large parts of

the European continent (latitudes 34° N to 70° N, longitudes 21° W to 59° E, see Fig. 3) with a horizontal resolution of 6.5km

(ICON grid R3B8) and 74 vertical levels up to a maximal height of 22.77km. The surface CH4 fluxes are provided to the85

transport model using the online emission module (Jähn et al., 2020; Steiner et al., 2024b).

For long living tracers like methane, the correct treatment of the lateral boundary concentrations is of importance. Therefore,

we extended the model by implementing lateral boundary nudging for ART tracers in order to obtain smooth fields and avoid
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strong gradients. Further, so-called meteogram output has been implemented for ART tracers, providing model output in the

vicinity of observation locations with high temporal resolution.90

For improved uncertainty estimates, we run a meteorological ensemble of 12 members. Each ensemble member uses slightly

different but equally likely parametrizations and meteorological initial and boundary conditions. The construction of this en-

semble follows the operational weather prediction at DWD (Schraff et al., 2016). In the following, we therefore distinguish

a so-called deterministic model run providing the best estimate of the modeled CH4 concentration, and the ensemble runs

providing 12 different CH4 concentrations to estimate the uncertainty.95

2.2 The need for a far-field correction

For cases where the model predicts almost no influence from our categorized emissions (i.e., clean air cases), deviations

between model and observations point to the need for correcting the CH4 advected across the lateral boundaries – here referred

to as “far field”.1 For our regional inversion problem, it is essential to separate the CH4 emitted within the domain from the

far field, in order to avoid model biases which would confound the aspired flux scaling. To minimize potential biases arising100

from imperfect boundary conditions, we construct a correction field which is added to the modeled far-field concentration in

the whole domain after the transport simulation. We require this correction field to be smooth on large length and time scales,

chosen in our case as 320km (horizontal), 1km (vertical) and 16h (time). The far-field correction range is usually limited to

±10ppb (see Fig. B1 for details). Appendix B comprises the mathematical derivation, parameters, and a statistical overview

of the far-field correction.105

2.3 Inversion

We use a Bayesian inversion to optimize the agreement of model and observations by scaling the flux categories. This is

formulated in the optimization problem

spost = argmin
s

{
1
2 (y−Hs−xff)>R−1(y−Hs−xff) + 1

2 (s− sprior)>B−1(s− sprior)
}

(1)

for the posterior scaling factors spost. Here, the first term penalized the deviation from the concentration observations, and the110

second term penalizes the deviation from the prior fluxes. In the first term, the vector y of observed concentrations is compared

to the model prediction, which consists of the transported fluxes Hs and the modeled far field xff. The transported fluxes Hs

depend linearly on the vector s of scaling factors for the flux categories, which is optimized. The difference between modeled

and observed values is weighted by the error covariance matrix R describing the combined uncertainty of the transport model

and the observations. With the second term we constrain s by defining a priori scaling factors sprior (sprior
i = 1 for all i) with an115

error covariance matrix B characterizing the a priori uncertainty.

In Eq. (1), the fluxes are parametrized by the vector s of scaling factors. The flux categories thereby define the low-

dimensional space in which the inversion can optimize the fluxes. The model observation operator H connects the space
1Technically, in our application to German CH4 fluxes, the far field also includes the initial CH4 concentration. But this is hardly relevant due to our

generous spin-up period of 17 days.
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of scaling factors (vectors sprior, spost) to the observation space (vectors y, xff). Computing H requires the transport model

which distinguishes the flux categories. The setup is designed for optimizing a low-dimensional vector spost of scaling factors120

(∼ 102 degrees of freedom) using a large number of observations (∼ 104), but an extension to more degrees of freedom and/or

more observations is possible.

2.4 Computation of model uncertainties

The inversion in Eq. (1) requires an estimate of the model–observation mismatch uncertainties described by R. In our case, the

measurement error is negligible in comparison to the model error, and the non-negligible representativity error is part of R.125

We simply refer to this as “model error” below. We estimate this uncertainty and the cross-correlations of model equivalents at

the observation locations using an ensemble of M = 12 different transport model realizations. The potential of using a small

transport ensemble for estimating model uncertainties was demonstrated by Steiner et al. (2024a). The main contribution R′ of

the uncertainty matrix is

R′ij = Cij
1

M − 1

M∑

m=1

(xmi − x̄i)(xmj − x̄j) + δijσ
2
const, (2)130

where xmi is the prediction of ensemble member m for observation yi, x̄i = 1
M

∑
mx

m
i is the ensemble mean, and σconst =

10ppb is a constant uncertainty added to each observation accounting for any representativity error. Indices i, j label observa-

tion data points that are typically distinguished by location, time, and sampling height. ByCij we denote a localization in space

and time such that Cii = 1 and Cij = 0 for any observations i and j we expect to be uncorrelated because of their temporal or

spatial separation. We use the notation δij = 1 if i= j and δij = 0 if i 6= j.135

2.4.1 Uncertainty inflation

The transport ensemble may not necessarily include the full uncertainty of the transport model, and the localization Cij further

reduces the simulated uncertainty by suppressing correlations. This motivates an inflation of the uncertainty to avoid overconfi-

dence in the model prediction. We inflate the uncertainty by a factor fi > 1 depending on the observation site of observation i,

leading to the matrix fifjR′ij . In the application below, we choose fi = 2 except for some stations with known difficulties, for140

which fi = 3 (see Table A1).

To avoid potential biases through site-specific small-scale features not captured in the model, we aim to base our inversion

on many observations. To this end, we limit the influence of individual data points on the inversion result by inflating the un-

certainty further in the case of a very large disagreement between model and observation. This is achieved by replacing fi with

f ′i ≥ fi to increase the uncertainty of individual observations until the deviation µ= y−Hsprior−xff between model and obser-145

vations is at most three standard deviations of the resulting error covariance matrixRij = f ′if
′
jR
′
ij , i.e., f ′i = max{fi, |µi|

3
√
R′

ii

)}.
This is justified because large deviations between model and observations, |µi|> 3

√
Rii, are likely caused by local pollution

or modeling problems that are not captured appropriately in our uncertainty estimate. This correction makes sure that inversion

results will be based on many observations and no single measurement can have an extreme impact.
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2.4.2 Flux dependence of model uncertainties150

In Eq. (2), we estimate the model uncertainty utilizing the model concentration xmi , which itself depends on the fluxes. In prin-

ciple, one can compute xmi using either the a priori fluxes or the a posteriori fluxes. In the latter case, the error covariance matrix

R depends on the scaling factors s, and the optimization problem Eq. (1) can only be solved numerically (see Appendix D for

details). We will refer to these two variants of the inversion as the prior-R and posterior-R inversion.

Computing posterior-R inversion exactly requires that each ensemble member distinguishes the various flux categories sim-155

ilar to the deterministic model run. To enable the posterior-R inversion without significantly increased computational effort

in the ensemble run, we approximate the posterior-based concentration xmi in the ensemble members as described in Ap-

pendix D2. The posterior-R inversion generally yields slightly higher emission estimates because larger scaling factors lead

to higher model uncertainties and thereby reduce the first term in Eq. (1). To provide robust inversion results with cautionary

uncertainty estimates, we compute the prior-R inversion and posterior-R inversion separately and interpret the difference of160

the two methods as methodological uncertainty.

2.5 Plume localization problem

Plumes caused by high emissions in a small area require special treatment to avoid a potential bias in the inversion due to the

so-called double penalty issue (Vanderbecken et al., 2023). In cases where our model falsely predicts that the plume reaches

an observation site, the inversion will reduce the emissions to improve the agreement with the observation. In the opposite165

case, when the model fails to predict that a plume reaches the observation, the inversion will not change the plume emission

amount but will wrongly increase emissions in other areas instead. This can cause systematic underestimation of fluxes from

localized plumes. In the posterior-R inversion, this problem is mitigated because the underestimation of emissions is penalized

by a lower model uncertainty. To avoid biases in the inversion results, we suggest to treat strong plumes separately, with their

own flux categories. This allows us to quantify the problem (see Sect. 5.6) and to limit the plume penalty influence on other170

flux categories.

3 Input data and processing

We apply the method to estimate CH4 fluxes in the year 2021 in Germany and in the surrounding European domain, relying

on input data for the transport simulation and CH4 concentration on the lateral boundary (Sect. 3.1), a priori fluxes (Sect. 3.2),

and observations (Sect. 3.3).175

3.1 Initial and lateral boundary conditions

The meteorological initial and lateral boundary conditions used to drive our transport model are taken from the archive of

DWD’s operational numerical weather prediction (NWP), which also employs the ICON model. As we do not assimilate

meteorological data in our application, we re-initialize the meteorological fields every night at 0 UTC, using the analysis fields
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Table 1. Input data for a priori CH4 fluxes. The second column lists where these fluxes were considered. Here, “Germany” refers to all model

grid cells that lie fully within the German borders.

Data provider Domain Fluxes Original

grid

Time

profile

Remarks

Umweltbundesamt

(UBA)

Germany GNFR sectors

A–L

(excluding

LULUCF)

native

(ICON)

constant based on reporting to the UNFCCC (UBA,

2023), spatially distributed using the Gridding

Emission Tool for ArcGIS (GRETA 1.2.01)

(Feigenspan et al., 2024)

Thünen Institute Germany organic and

mineral soils

100m×
100m

constant emissions from organic and mineral soils, in-

cluding wetlands but excluding artificial ponds

(approx. 160kt CH4 per year) (Fuß and Aku-

bia, 2024)

CAMS-REG-ANT,

v7.0

model domain

excl. Germany

GNFR sectors

A–L

(excluding

LULUCF)

0.05◦×0.1◦ constant based on data reported to the UNFCCC for

countries in Western and Central Europe (incl.

Finland and the Baltic states) (Kuenen et al.,

2021, 2022)

CAMS inversion

optimized, v22r2

model domain

excl. Germany,

excl. oceans

wetlands 1◦× 1◦ monthly

averages

variant using surface air-sample data for

the inversion (Segers and Houweling, 2020);

Fluxes in model grid cells located over the

ocean are set to zero.

Rocher-Ros et al.

(2023), version 1.1

full model

domain

rivers and

streams

0.25◦×
0.25◦

monthly

averages

Weber et al. (2019) oceans (full

model domain)

oceans 0.25◦×
0.25◦

constant

from the operational NWP data assimilation. Lateral boundary conditions for the meteorological fields are taken from the NWP180

short term forecasts with hourly resolution.

For the CH4 concentrations, we use initial and lateral boundary concentrations from the global CAMS inversion-optimized

dataset (Segers and Houweling, 2020), version v22r2, in the variant based on surface air-sample data for the inversion. The

CAMS data have a resolution of 1◦× 1◦ and are interpolated onto our model grid. In contrast to the meteorological fields, the

CH4 concentrations are only transported and never re-initialized.185

3.2 A priori CH4 fluxes

For the inversion, we employ a priori CH4 fluxes that were compiled from six datasets of anthropogenic and natural fluxes,

as detailed in Table 1. We ensured mass conservation when interpolating to our model grid. We generally distinguish between
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anthropogenic emissions excluding LULUCF, and natural fluxes plus LULUCF. Anthropogenic fluxes excluding LULUCF

are split further into 12 GNFR sectors (gridded aggregated NFR, nomenclature for reporting, Veldeman et al. (2013)), but we190

only use this separation in selected regions of interest. Natural plus LULUCF fluxes of CH4 are mostly dominated by wetland

emissions, for which we do not distinguish between natural and anthropogenic origin.

The datasets in Table 1 were chosen such that our a priori fluxes are based on the national reporting to the UNFCCC.

For Germany, the a priori LULUCF fluxes obtained from Thünen Institute cover the emissions from mineral and organic

soils. Notably, this excludes emissions from artificial water bodies – such as ponds – amounting to 160kt or 8.5% of the195

total German emissions in the national reporting, though these numbers are associated with large uncertainties (UBA, 2024,

Table 399). These emissions are missing in our a priori estimate.

3.3 Observations and applied pre-processing

We compare our model predictions to the high quality ground-based in situ observations collected in the European Obspack

(ICOS RI et al., 2024), which includes the ICOS stations among others. These observations are assumed to be representative200

for a larger area (Storm et al., 2023). Table A1 lists all 53 available stations and Fig. 3 shows 50 stations that were used for the

inversion. For tower observations, we only consider sampling levels at least 50 m above ground level to reduce the influence

of very local emissions. For towers providing more than three sampling heights, we consider the three highest levels. Due

to significant model–observation mismatch, we exclude the IPR, FKL and LMP stations. For LUT, BIR and HUN we only

consider some seasons, specified in Table A1.205

The model data are interpolated horizontally and vertically to the station sampling locations. The vertical sampling locations

in model coordinates is derived from the station sampling height and the modeled station elevation, depending on the station

characteristics (column “mountain” in Table A1). For high mountain stations, the modeled station elevation is given by the

real station elevation above mean sea level. For stations on smaller mountains, we consider the arithmetic mean between real

station elevation and model topography as proposed by Brunner et al. (2012) and Henne et al. (2016), and for all other stations210

the modeled station elevation is set to the model topography.

To make use of observations which are likely well represented by the model, we filter the observations based on the local

time of day, wind speed, and model–data mismatch. Table 2 lists how the root mean square error (RMSE) of the model output

changes during these pre-processing steps. We start by smoothening both observations and modeled concentrations in a time

window of approximately ±1.5h around each observation time as depicted in Fig. 1. This allows for some uncertainty in215

the timing of modeled tracer transport. The resulting correlation of neighboring time steps is automatically considered in the

ensemble-based uncertainty estimate.

In the next steps, we filter the data by time in order to keep only observations expected to be representative for large regions.

Observations within the planetary boundary layer are most representative in the afternoon hours whereas measurements at high

mountains have less local influence at night time (Bergamaschi et al., 2015). We therefore use the time windows 23 h to 5 h220

(local mean time) for stations on high mountains and 11 h to 17 h for all other stations.
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Table 2. Average root mean square error (RMSE), mean absolute bias of the model prediction minus observation, and number of available

data points after each processing step (1–6). Each row adds a processing step to all previous steps. Step 7 (uncertainty weighting) is not a

processing step in the inversion since it uses only the diagonal of the uncertainty matrix R, but it underscores the importance of accurate

uncertainty estimation. Step 8 refers to the result of our inversion. RMSE and bias are computed separately for each station, sampling height

and month. The obtained values are weighted by the number of data points and averaged. By taking the mean of multiple RMSEs for different

stations, sampling heights and months, we obtain lower numbers than for the RMSE of the combined dataset, which would average squared

values and thereby would give higher weight to large deviations between model and observations.

Step Mean RMSE Mean absolute bias Data points

1 horizontal and vertical interpolation 27.6 ppb 9.6 ppb 6.02 · 105

2 time average (3 h) 25.8 ppb 9.6 ppb 6.02 · 105

3 time window 11 h–17 h / 23 h–5 h 23.5 ppb 9.8 ppb 1.48 · 105

4 minimal wind speed 2ms−1 22.4 ppb 9.7 ppb 1.30 · 105

5 extreme mismatch exclusion 21.5 ppb 9.4 ppb 1.29 · 105

6 far-field correction 19.4 ppb 7.2 ppb 1.29 · 105

7 weight by inverse uncertainty 16.6 ppb 6.6 ppb 1.29 · 105

8 inversion (posterior fluxes) 14.1 ppb 3.0 ppb 1.29 · 105

−2 0 2

0

0.5

1

time difference (h)

re
la
ti
v
e
w
e
ig
h
t

model

observation

Figure 1. Weighting function for time interpolation of model and observations. For example, an interpolated model point at 16:30 UTC

averages over all model output between 15:30 UTC and 17:30 UTC with full weight and another 1 h with linearly decreasing relative weight.

The model yields instantaneous values every 15 min, whereas observations are provided as hourly averages, three of which contribute to the

observational time average. Reference times are those times for which observations are available.

We furthermore exclude times with no wind to avoid a strong influence of local emissions that are not resolved in the model,

motivated by Ganesan et al. (2015). All data points for which the model predicts a wind speed of < 2ms−1 are excluded,

which improves the overall agreement of model and observations as shown in Table 2 (step 4). Figure 2 shows that the RMSE

indeed increases significantly at low wind speeds. This increase is partially captured by an increase of the ensemble spread,225

supporting the idea of an uncertainty estimate depending on wind speed as proposed by Bergamaschi et al. (2022).

In the last filtering step – step 5 in Table 2 – we exclude data points with extreme mismatch between model and observations

of more than 200ppb. Data points where the observations are more than 20ppb below the model-predicted far field are also
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Figure 2. RMSE dependence on wind speed (left axis). All data points from step 3 in Table 2 were ordered by the model-predicted wind

speed and split into 100 bins, each containing approximately 1500 data points. The blue line indicates the cumulative fraction of observations

(right axis). The figure shows the RMSE difference of model and observation (black line) and the mean ensemble spread multiplied by factor

4 (magenta line) for each of these bins. The ensemble spread is the standard deviation of the model prediction in the 12 ensemble members. It

is a main contribution to our uncertainty estimate for the model–data mismatch. Much of the larger RMSE at low wind speed is well captured

by the ensemble spread inflated by factor 4. In the inversion, we discard data points with wind speeds below 2ms−1 (gray vertical line).

discarded. Since no strong sinks of CH4 are expected, the contribution of CH4 from the lateral boundaries should not exceed

the observations. Thus, an observation below the model-predicted far field indicates an error in this far field. Steps 6–8 in230

Table 2 complete our processing chain by applying the far-field correction (Sect. 2.2), indicating the relevance of the model

uncertainty (Sect. 2.4), and finally yielding the inversion results.

4 Application to Germany and neighboring areas for the year 2021

We apply our method to estimate the German CH4 emissions in 2021. To this end, we consider the domain depicted in Fig. 3

and run the transport model for 2021 with a spin-up period of 17 days, starting on 15 December 2020. In this section, we235

provide details specific to this application.

4.1 Implementation of CH4 fluxes

For the inversion, we define the flux categories based on sector and region with the primary aim of providing an accurate

estimate for emissions from Germany, resolving federated states where possible, to address the user requirements of potential

stakeholders.240
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Figure 3. Model domain, colored to distinguish 35 patches defining regional flux categories. Observation sites (dots) are colored by the choice

of model equivalent height (see Table A1). Dark blue at the domain boundary indicates regions for which emissions are not categorized and

therefore not modified in the inversion. Other colors only distinguish neighboring patches. In white hatched regions, natural fluxes are also

categorized and scaled. A white ellipsis marks the Upper Silesian Coal Basin, in which fugitive emissions define their own flux category. In

Germany, the map shows the six regions used for the agricultural sector. For other sectors in Germany, we use four regions: south (yellow

and light green), west (dark blue), north (light green), and east (dark green and yellow).

4.1.1 Definition of flux categories

For the agricultural sector (GNFR sectors K+L), which contributes roughly two thirds of all German CH4 emissions, we dis-

tinguish six regions within Germany as depicted in Fig. 3. We furthermore try to distinguish the sectors waste (GNFR sector J)

and public power (GNFR A) from the sum of all remaining sectors (“other”, GNFR B–I). However, we will only present results

in which these sectors are combined (see discussion in Sect. 6.3 and Appendix I). For the sectors waste, public power, and other245

we distinguish four regions, i.e., the federated states south: Baden-Wuerttemberg and Bavaria, west: North Rhine-Westphalia,

Hesse, Rhineland-Palatinate and Saarland, north: Lower Saxony, Bremen, Hamburg and Schleswig-Holstein, as well as east:

Mecklenburg-Western Pomerania, Brandenburg, Berlin, Saxony, Saxony-Anhalt and Thuringia. Natural plus LULUCF fluxes

in Germany are treated as a single flux category.

Outside Germany, we do not distinguish sectoral emissions, with one exception. Agriculture emissions in the Netherlands250

form their own category, as we found that they strongly influence the CH4 concentrations in Germany, caused by the proximity

and high emission rates in the Netherlands. We define categories by area for anthropogenic emissions excluding LULUCF

such that a comparably high resolution is obtained in regions near Germany with high observation coverage. These area-

defined categories follow borders as feasible for the inversion. Areas with small expected influence on inversion results for

Germany are combined in large categories, such as Spain plus Portugal, Türkiye plus Greece, and large areas east of Poland.255

All area-defined categories are shown in Fig. 3. We mitigate and analyze the plume problem (Sect. 2.5) in our inversion system
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by defining a separate flux category for the strongest CH4 plume in Central Europe. These are fugitive emissions from the

Upper Silesian Coal Basin with yearly emissions of 567kt in our prior (white ellipsis in Fig. 3).

We treat natural plus LULUCF fluxes separately and categorize them only in Germany, Scandinavia, and the north-eastern

part of our domain (hatched regions in Fig. 3). This is motivated by strong CH4 emissions from wetlands in summer in Scandi-260

navia and northern Russia in our prior (Segers and Houweling, 2020). Uncategorized fluxes – whether natural or anthropogenic

– are not scaled in the inversion, but still included in the transport simulation such that no fluxes are discarded. To avoid strong

gradients in the concentration fields, the boundaries between different area-defined categories are smoothened as visualized in

Fig. 3.

4.1.2 Tracer assignment in the transport model265

In the transport simulation, we consider not only the categorized fluxes, but also the CH4 from lateral boundaries and from

uncategorized emissions. Overall, we simulate the transport of 58 tracer fields in the deterministic model run:

(i) All anthropogenic emissions excluding LULUCF. This constitutes a single, common tracer.

(ii) All natural plus LULUCF fluxes. This constitutes another single, common tracer, which summed with (i) covers all a

priori emissions in the domain.270

(iii) Flux categories. For each flux category an own tracer field is defined. To avoid the accumulation of CH4 beyond the

time scale on which we consider the modeled transport reliable, we set an artificial decay rate of these concentrations.

After emission, the concentration in these tracer fields decays with a mean lifetime of five days. In combination with

(i) and (ii) this technical feature allows a waning of sectoral attribution over a few days – no CH4 is lost, though, as

full CH4 transport is modeled without decay in (i) and (ii). This regulates that any attribution of a CH4 anomaly to a275

certain region or sector is only attempted if the emission was fresh or a few days ago. Furthermore, this allows us to

save computing time by limiting these flux category tracer fields to altitudes below 8km. In total, 49 categories for

anthropogenic emission excluding LULUCF are covered – including 18 sector-resolving categories in Germany, two

sector categories in the Netherlands and one plume category – and complemented by five natural plus LULUCF flux

categories.280

(iv) Far field. The far field contains the CH4 from initial and lateral boundary conditions.

(v) Auxiliary field for plume detection. For the purpose of investigating the model uncertainty due to the plume from the

Upper Silesian Coal Basin, an auxiliary tracer is added.

In the post-processing of the model data, the categorized concentrations from (iii) are subtracted from the combined tracers (i)

or (ii).285
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4.2 Construction of the model error covariance matrix

In Sect. 2.4, we provided a general construction of the model error covariance matrix R based on an ensemble of transport

realizations. For the application to Germany, we need a specific choice of the localization matrixCij , which suppresses spurious

correlations arising from the small transport ensemble. Here, we choose Cij to be a Gaussian localization matrix with standard

deviations 6h (time), 319km (horizontal) and 400m (vertical). Moreover, we add two further terms to the uncertainty matrixR290

as follows.

First, we recall that transport errors can cause a bias for a plume (Sect. 2.5). We mitigate this problem by increasing the

uncertainty for all observations that may be influenced by the plume from the Upper Silesian Coal Basin. Before the uncertainty

inflation, we replaceR′ij byR′ij+0.25ρ2
i δij where ρi denotes the concentration of an auxiliary tracer. This tracer contains only

the emissions of the plume, spatially smoothened on the length scale of 0.4◦ (one standard deviation of a Gaussian filter). Next,295

the model uncertainty is inflated by a factor 2 or 3, depending on the station, see Table A1. After the uncertainty inflation,

we account for the uncertainty in the far-field correction. We replace Rij by Rij + 0.5|cicj |C̃ij where ci denotes the smooth

correction field introduced in Sect. 2.2 and C̃ij is the Gaussian localization matrix constructed by the length and time scales of

the far-field correction (see Appendix B).

To assess whether the estimated uncertainties are reasonable, one can compute the χ2/Ndof value. This value compares300

the a priori model–observation mismatch to the uncertainty assumed for this mismatch (see Appendix C for details). A value

of χ2/Ndof > 1 indicates that uncertainties are underestimated, whereas values smaller than one indicate the opposite. When

comparing the observations to the far-field-corrected model (step 7 in Table 2), we find χ2/Ndof ≈ 0.16 (median of 12 months).

In an idealized setup, this indicates that the uncertainties of the model-data mismatch are overestimated by a factor 2.5. This

implies that our uncertainty inflation – by a factor 2 for most observations – seems unnecessary in the idealized setup. However,305

we work with real data that can contain unknown biases in transport and boundary conditions, and simplifying assumptions

about the representativity of the low-dimensional state space of the inversion. We contain these potential issues of unknown

error components by inflating the uncertainties, for sensitivity tests see Appendix E.

4.3 Inversion time window and temporal aggregation

We apply the inversion separately for each month in 2021. In each monthly time window, we start from fixed a priori scaling310

factors sprior
i = 1 and use observations within the time window to compute a posteriori scaling factors as explained in Sect. 2.3.

However, when aggregating results for the whole year, we treat the uncertainties of the prior or posterior fluxes of different

months as correlated because these likely include systematic uncertainties and biases which we cannot fully separate from the

statistical uncertainty. We therefore aggregate by adding up absolute emissions and their uncertainties linearly.

4.4 Prior uncertainties315

In each inversion time window, we consider uncorrelated a priori scaling factors with a two standard deviation (2σ) uncertainty

of 80% for most flux categories, corresponding to a 95% confidence interval of ±80%. Throughout this paper, uncertainties
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will denote two standard deviations or 95% confidence intervals. Categories resolving emission sectors have a higher prior 2σ

uncertainty of ±100%, and within Germany categories describing the same sector have an a priori uncertainty correlation of

50% (e.g., uncertainties of agriculture emissions in the German states of Bavaria and Baden-Wuerttemberg are assumed to be320

correlated). Importantly, the previously defined sectors waste, public power and “other” are combined and denoted “non-agr.”

in the following. The ±100% uncertainty applies to the combination. For the Upper Silesian Coal Basin as well as regions

outside of our primary focus in Central Europe and with low observation density, the 2σ uncertainty is set to±50%. Figure 4(b)

shows these a priori uncertainties on a map. The sensitivity of our results to these choices and many more tuning parameters is

tested in Appendix E.325

4.5 Posterior uncertainty estimates

Our inversion setup necessarily makes idealized assumptions on uncertainties of a priori and a posteriori fluxes. Based on these

assumptions, the inversion yields posterior statistical uncertainties as part of the posterior error covariance matrix. However,

these uncertainties neglect possible unknown biases and other systematic errors which we need to anticipate when working

with real data. We therefore use an enhanced notion of posterior uncertainty that combines statistical and methodological un-330

certainties. The main contribution to the posterior uncertainties is the statistical uncertainty, which we provide as two standard

deviations (95% confidence interval). Additionally, we combine the two variants of inversion (prior-R and posterior-R, see

Sect. 2.4.2) by taking the arithmetic mean of the two separate inversion results, arriving at the combined scaling factors. As-

suming that the difference of the two variants indicates an additional, methodological uncertainty, our combined uncertainty

range includes the uncertainty ranges of both individual results.335

Furthermore, each observation site may have a bias due to very local pollution or topography that is not modeled properly.

We therefore only consider an inversion result reliable if it is robust with respect to the choice of used observations. To represent

this in the uncertainty estimate, we repeat the inversions 50 times for both prior-R and posterior-R, excluding each station once.

The final posterior uncertainty range is spanned by the lower and upper bounds of the 100 uncertainty ranges, each describing

a 95% confidence interval. This method of compensating for possible methodological weaknesses in a cautionary uncertainty340

estimate implicates that the posterior uncertainty may not necessarily be smaller than the prior uncertainty. Such cases we

interpret as no information gain from the observation-based inversion with respect to the prior.

5 Results

This section presents the inversion results for Germany and the considered European regions, along with examinations of

the seasonal cycle, validation of the results, and sensitivity tests. All uncertainty estimates are presented as 95% confidence345

intervals as detailed above.
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Figure 4. Full-year averages of (a) a priori fluxes, (b) a priori uncertainty on scaling factors, (c) a posteriori scaling factors, and (d) a posteriori

uncertainty on scaling factors. Multiplying the a priori emissions (a) with the scaling factors (c) yields the a posteriori emissions. (b) and (d)

show half of the 95% confidence interval of the fluxes relative to the a priori fluxes, i.e., a 2σ uncertainty of ±50% on the a priori appears

as 0.5 (i.e., 50%) on the color scale. The direct comparison indicates the uncertainty reduction.

5.1 Resulting scaling factors

Figure 4 presents an overview of (a) the a priori CH4 fluxes, (c) the resulting scaling factors, and the respective uncertainties

(b, d), all accumulated over the year 2021. The a posteriori scaling factors (Fig. 4 c) show the correction to the a priori emissions

obtained in the inversion. A considerable increase in emissions is found for Germany and the Benelux. Lower emissions350

compared to the a priori are predicted for Scandinavia (see discussion in Sect. 6.3). The scaling factors should be considered

jointly with their uncertainties. The comparison of Fig. 4 (b) and (d) shows a substantial uncertainty reduction for Germany

and most of the surrounding countries, for which we chose a high a priori uncertainty. For a more detailed comparison of a

priori and a posteriori emissions and uncertainties, we consider selected national emission estimates in Fig. 5.

Reliable inversion results are expected for countries or regions with sufficient observation coverage, strong emission signals,355

representation in the respective flux categories, and only moderate issues due to complex topography. These criteria are met

for Germany, the Netherlands and the United Kingdom plus Ireland as grouped in Fig. 5. For Germany (first line in Fig. 5),
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Figure 5. National CH4 emission estimates comparing reported (NIR), prior, and posterior fluxes for 2021 with horizontal lines indicating

95% confidence intervals. Countries are grouped by the expected robustness of their inversion results. Some neighboring countries are

combined to obtain more accurate results. For Germany, the inversions can resolve the agricultural sector, though the separation against

natural and LULUCF fluxes is difficult. All other anthropogenic sectors are combined in the category “other excl. LULUCF”. The inclusion

of two inversion methods (prior-R and posterior-R, markers) yields an estimate of the methodological uncertainty. Accumulated fluxes

from national inventory reports (NIR) to the UNFCCC submitted 2024 (including LULUCF emissions) are shown for reference (light blue

bars, UNFCCC, 2024). For France (Citepa, 2024) and the United Kingdom (Department for Energy Security and Net Zero, 2024), the

light blue bars show emission data from the respective inventory agencies excluding overseas territories and crown dependencies. Posterior

uncertainties asymmetric with respect to flux estimates such as in Switzerland indicate the strong influence of a single observation site.

the total posterior CH4 emissions (red bar) are (32± 19)% higher than the anthropogenic emissions (including LULUCF)

reported to the UNFCCC in 2024 (light blue bar). The direct comparison to the reporting neglects the unreported natural

fluxes, but for Germany these are expected to be small because all relevant soil emissions are included in the LULUCF sector.360

The inversion significantly increases emission estimates from the agriculture sector while the combined other sectors remain

nearly unchanged. Note, however, that the uncertainty in the sector attribution is large (horizontal lines, see further discussion

in Sections 5.5.2 and 6.3).

For the Netherlands, we also find significantly higher emissions than in the inventory. Compared to Germany, the attribution

to sectors has an even larger uncertainty, associated with fewer observations that could distinguish the sectors. Nevertheless,365

the total emissions from the Netherlands are comparably well constrained by the observations. For the United Kingdom and

Ireland – which we combine to obtain more accurate results – the inversion yields a strong uncertainty reduction while hardly

changing the total emissions, indicating a good agreement of observations and national inventory.

In most countries, the observations do not cover the whole country, or the inversion results rely on few observations. In

Fig. 5 (gray-shaded part) we provide emission estimates also for countries or regions affected by this issue, though these have370

a large posterior uncertainty. Another issue arises from the definition of the flux categories, which do not necessarily follow
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Figure 6. Monthly posterior emission rates for selected countries or regions. Colored areas show the posterior uncertainties, and dotted

lines with small markers indicate prior emission rates. In the prior, only the natural and LULUCF fluxes are time-dependent. The panels

show (a) countries with minimum in May, (b) countries with a maximum in winter, and (c) other countries and regions. For France and

Germany, selected regions are shown additionally (white markers). “DE, northwest” includes Rhineland-Palatinate, Saarland, Hesse, North

Rhine-Westphalia, Lower Saxony, Schleswig-Holstein, Bremen and Hamburg.

country borders (see Fig. 3). In France, Belgium, and Switzerland, the inversion scales flux categories overlapping multiple

countries2. This implies that national emission estimates derived for these countries have an additional uncertainty and artificial

correlations with neighboring countries. However, this is of no concern for our application for Germany. The national emission

estimates are computed from the gridded posterior fluxes and precisely follow the country borders as shown in Fig. 4. The375

scaling factors and uncertainties of all flux categories are listed in Fig. A1 for completeness.

5.2 Seasonal cycle

Although the national emission estimates are given for the full year, a closer examination of the seasonal cycle yields additional

insights. The posterior fluxes are computed independently for each month and region. Figure 6 shows the monthly emission

rates for the countries considered in Fig. 5. While the seasonal cycle is strikingly different depending on the region, we find380

some recurrent features. For Germany, Poland, the Netherlands, and Austria plus Czechia (panel (a) in Fig. 6), the posterior

emission rates have their minimum in May. A local minimum between April and June is also found for northern France and

2Technically, the issue also affects Italy because Corsica is combined with parts of Italy in one flux category. But the a priori emissions from Corsica are

so low that the effect on the national emission estimate is negligible.
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Belgium plus Luxembourg, see panel (b). In most countries, this minimum is followed by a local maximum in July or August,

which is most prominent in the Netherlands and Austria plus Czechia (panel (a)).

The differences between the regions become larger in autumn and winter. In September, posterior emission rates reach their385

maximum in Germany and Italy, and their minimum in (northern) France. France and Belgium plus Luxembourg have their

highest emission rates in winter, when Switzerland and Spain plus Portugal have their minimum. For some regions – most

notably Italy and the United Kingdom plus Ireland – no clear pattern is found in the seasonal cycle for 2021 (panel (c) in

Fig. 6).

The seasonal cycle in the inversion results may be partially influenced by the observation coverage because many stations390

lack data covering the whole year. To avoid this effect, we repeated the inversion using only stations which provide data for

at least 20 days of each month. The seasonal cycle in these results does not change significantly, see Fig. A2. We further note

that there is a seasonal cycle in the observations (East et al., 2024), which is captured well by the far field in the model though

(see Fig. A3). A possible bias in the lateral boundary conditions determining the far field could also influence the seasonal

cycle in the estimated fluxes. Moreover, the different meteorology in summer and winter – especially influencing the planetary395

boundary layer and vertical mixing (Seidel et al., 2012) – can lead to a seasonal bias in our transport model (Bessagnet et al.,

2016; Canepa and Builtjes, 2017). This highlights the need for careful interpretation of the seasonal cycle, as meteorological

differences could introduce biases that mask true emission patterns. Another potential contribution to the seasonal cycle could

arise from neglecting the OH sink of CH4 in our limited domain.

5.3 Validation400

A straightforward validation of the inversion results is possible using independent validation stations. Having excluded each

station once in separate inversion runs, we can use every station as an independent validation site in the respective inversion

run. Figure 7 shows histograms of the RMSE statistics evaluating the model–data mismatch before and after the inversion. The

validation stations agree on average significantly better with observations when using a posteriori emissions compared to the a

priori.405

5.4 Sensitivity tests

Our inversion method has various tuning parameters. Above we have described the inversion and its results for one choice of

these parameters. We analyzed the sensitivity of these parameters by repeating the inversion 48 times with modified parameters.

Table E1 lists these test cases with their ID, parameters, and influence on the inversion results. An overview of the national

emission estimates for each test case is provided in Fig. E1. Here, we summarize the main results and refer to Table E1 for410

details.
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Figure 7. Statistics of the relative (a) and absolute (b) improvement of the model–observation mismatch by the inversion at independent

validation stations. Each station and month is considered separately in its own (prior-R and posterior-R) inversion, with the validation

station excluded from the inversion to remain independent. The histograms show (a) 1− rpost/rprior and (b) rprior− rpost where rpost and rprior

refer to the RMSE of the model–observation comparison in the case of posterior scaling and prior scaling, respectively. Each time series

contributing to the histogram is weighted by the number of its data points. We consider all data points within the daily time window without

filtering for wind speed, extreme mismatch, uncertainty weighting or far-field correction (i.e., after step 3 in Table 2) to keep the comparison

as close as possible to the original data. Positive values indicate an improvement in the model prediction due to the inversion.

5.4.1 Comparison to observations

The filtering steps listed in Table 2 influence the inversion results significantly. Most prominently, selecting nighttime observa-

tions for high mountain stations and afternoon hours for other stations strongly affects the inversion and improves the model

representativeness (case 201 in Table E1). This is one of only four sensitivity tests with posterior fluxes deviating from the415

reference case by & 30% of the posterior uncertainty, which we call a strong change in inversion results. Other filtering pa-

rameters such as the number of sampling heights per station (case 202) and the minimal wind speed (cases 203–205) affect the

inversion results noticeably, although changes are small compared to the uncertainties. Neglecting extreme outliers has only a

small effect (cases 206, 207), but limiting the influence of outliers by increasing their uncertainty has a considerable impact

(cases 208, 209).420

The choice of observation sites is analyzed in cases 601 and 602, which select subsets of stations with good observation

coverage over the full year. When using only 27 stations (case 602), the results change strongly compared to the reference case

with 50 stations, also because some regions are hardly observed in case 602 (compare also Fig. 6 with Fig. A2). Varying the

elevation of high mountain stations has only little impact on the inversion results (case 100). The effect of time-averaging over

3h (as chosen in step 2 of Sect. 3.3) is noticeable in the results, but small compared to the uncertainties (case 101).425

5.4.2 Uncertainty

The construction of the error covariance matrix R following Sections 2.4 and 4.2 contains numerous tuning parameters. Key

parameters are the overall uncertainty inflation factors fi (cases 302 and 303 in Table E1) and the uncorrelated additive un-

certainty σconst of each data point (cases 309, 310). Variations of these parameters change the inversion results considerably.

The tuning parameter σconst illustrates the importance of hidden patterns in the considered data. Increasing to σconst = 20ppb430

effectively reduces the weight of observations with a small ensemble-estimated transport uncertainty. As observations with
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strong emission signals and high transport uncertainty become more relevant, the emission estimate for Germany is increased

by 5% (case 310 in Fig. E1).

Other important parameters are the correlation scales in the localization for the ensemble-based uncertainty estimate. The

overall effect of these scales on the posterior scaling factors is small (cases 304–308), but these parameters also influence435

the posterior uncertainties. The sensitivity tests indicate that 12 ensemble members are sufficient to estimate the uncertainties

and correlations even without a strong localization. In general, we expect that a larger transport ensemble will yield better

statistical estimates for uncertainties and their correlations. This reduces the need for a localization which suppresses spurious

correlations. The plume localization uncertainty (see Sect. 2.5, cases 300 and 301) arising from the Upper Silesian Coal Basin

seems negligible when considering the full domain. However, the additional plume localization uncertainty reduces the negative440

bias for the plume emissions (see Sect. 5.6).

5.4.3 Far-field correction

The far-field correction explained in Sect. 2.2 strongly influences the results. Removing the correction field leads to striking

changes in the inversion results, including unrealistic negative scaling factors for some natural flux categories (case 400).

However, changing various tuning parameters of the far-field correction within a reasonable range has much smaller effects.445

The selection of data points used for the far-field correction (cases 409, 410) and the overall correction strength (cases 401,

402) have modest influence, whereas correlation scales in the correction play a minor role (cases 403–408). The additional

uncertainty added to R due to the far-field correction has little influence on the inversion results (cases 412–414). We draw

the conclusions that (i) the far-field correction is important for the inversion and (ii) the inversion extracts most information

from signals that are hardly affected by the precise form of the far-field correction, especially from strong emission signals450

(� 20ppb).

5.4.4 A priori error covariance matrix

Modifying the a priori uncertainty or correlations of the scaling factors (B in Eq. (1)) changes the results quantitatively, but

not qualitatively. We notice that a smaller a priori uncertainty (case 500) narrows the ability to discriminate sector emissions,

because the sector attribution tends to follow the a priori uncertainties. A coarser spatial resolution in Germany (case 504) and455

different choices of sectors (cases 503, 506) yield aggregated German sector emissions that agree well with the reference case.

5.4.5 Inversion time windows

In the reference case, we considered each month independently. Increasing the inversion time windows to three months has a

considerable influence on the results (case 702). As the inversion time window increases, the overall weight of the observations

in the inversion also increases. Thus, posterior uncertainties are reduced and the deviations between posterior and prior are460

amplified.

20

https://doi.org/10.5194/egusphere-2025-1464
Preprint. Discussion started: 15 May 2025
c© Author(s) 2025. CC BY 4.0 License.



0.0 0.2 0.4 0.6 0.8 1.0
uncertainty posterior / prior

0.0

0.2

0.4

0.6

0.8

1.0

RM
SE

 p
os

te
rio

r /
 p

rio
r

Germany

France (mainland)

Austria, Czechia
Belgium, Luxembourg

Spain, Portugal
UK, Ireland

Netherlands

Poland

Italy

Denmark

Switzerland

DE: agr.

DE: non-agr.

DE: natural + LULUCF

Figure 8. RMSE and mean uncertainty of CH4 emission estimates in synthetic experiments for selected countries, regions, and sectors.

Each of the 100 synthetic experiments generates random true emissions. The vertical axis shows the root mean square (RMS) deviation of

the posterior from these true emissions, relative to the RMS deviation of the prior from the truth. Lower values indicate that the inversion

improves the emission estimate. The horizontal axis shows the posterior uncertainty relative to the prior uncertainty. The disk size indicates

the amount of the prior emissions.

5.5 Potential for detecting emissions

In this section, we complement the uncertainty estimates of our inversion results by separate measures for the sensitivity of the

posterior to true emissions. The potential for detecting emissions from different sources can be identified using the posterior

error covariance matrix Bpost. However, the real error reduction is also influenced by the far-field correction and the filtering465

of observations, which is not fully captured in Bpost. We therefore use experiments with a “synthetic”, i.e., define truth and

pseudo-observations to test the full inversion system.

5.5.1 National emission estimates

We first aim to verify that the inversion yields meaningful posterior emission estimates and uncertainties given a perfect

transport model. To this end, we generate 100 random vectors of scaling factors following the probability distribution assumed470

in the a priori uncertainty. These scaling factors define the synthetic truth, and the model prediction for the observations

obtained using these scaling factors defines our pseudo-observations. We further add uncorrelated Gaussian noise of standard

deviation 2ppb to these pseudo-observations. Since the pseudo-observations are inferred from the model data, there is no

transport error in these synthetic experiments.
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Figure 9. Averaging kernel matrices of German sector emissions (a, c) and scaling factors (b, d). The kernel is estimated using either the

posterior covariance matrix (a, b) or 100 synthetic experiments with random truth (c, d). The small matrices on the bottom indicate what we

aim for (posterior equals truth). The value 0.96 in the first row (“total”), second column (“agriculture”) of panel (a) means that if in reality all

German agriculture emissions were 1kt higher than in our prior, then we would expect an increase in the posterior total German emissions

by 0.96kt. Similarly, the value 0.67 in the same cell of panel (b) means that increasing real agriculture emissions by 10% should increase

our posterior total emissions by 6.7%. All matrices are averaged over the whole year. Red lines separate the individual sectors from their

sum (“total”). By “non-agr.” we denote anthropogenic emissions excluding agriculture and LULUCF.

The quality of the model prediction for this synthetic truth is shown in Fig. 8 for selected countries and German sectors. By475

comparing to the synthetic truth, we find the prior and posterior error. Their ratio (vertical axis in Fig. 8) shows a significant im-

provement by the inversion for all considered regions and German sectors, with the exception of German natural and LULUCF

fluxes. The uncertainty reduction of the inversion (horizontal axis) provides a realistic estimate of the real error reduction (ver-

tical axis) for the case of high quality observations, ideal transport modeling and perfect far field. In some cases (Netherlands,

Switzerland, Belgium, and Luxembourg), the real error reduction is significantly better than the uncertainty reduction suggests.480

This is no surprise because in this synthetic setup the transport error as the main source of uncertainty is switched off. Overall,

the synthetic experiments confirm the potential for a strong uncertainty reduction in Central Europe.

5.5.2 Distinguishing sectors in Germany

Within Germany, we distinguish agriculture from other emissions. The ability to distinguish sectors can be described by av-

eraging kernel matrices which estimate the dependence of the posterior on the true emissions, Aemis
ij = ∂epost

i /∂etruth
j where ei485

denotes emissions from sector i. Since the true emissions etruth are generally unknown, the averaging kernels Aemis can only
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be estimated. Figure 9 shows such estimates for Aemis (panels a, c) and the averaging kernel for scaling factors, Ascaling factors
ij =

∂spost
i /∂struth

j (panels b, d). Assuming a perfect transport model and perfect far field, the averaging kernel matrix can be esti-

mated by Aemis ≈ I −Bpost. emisB
−1
prior emis (Rodgers, 2000) using the prior and posterior covariance matrices of the emissions

from the prior-R inversion (see Appendix H1). I denotes the identity matrix. Figure 9(a) shows this averaging kernel estimate490

for German sector emissions, extended by a row and column for the total German emissions.

The first row of Fig. 9(a) indicates that the total German posterior emissions follow changes in every sector with high

accuracy (88% to 96%). The diagonal of Fig. 9(a) signifies that changes in the agriculture will be detected very well and also

the attribution to the sum of all other anthropogenic sectors excluding LULUCF (“non-agr.”) will be mostly correct. However,

LULUCF plus natural fluxes will in large parts be falsely attributed to the agriculture (second row, last column). Note that495

ideally, the first row and the diagonal elements would be close to 100% (color-coded in the small matrix bottom left). The

averaging kernel Ascaling factors in Fig. 9(b) shows that the influence of LULUCF and natural emissions on the posterior scaling

factor for agriculture emissions remains low (second row, last column). But if all emissions are scaled by the same factor (first

column), the changes will be mostly attributed to the agriculture sector (as explained in Appendix G).

The averaging kernel matrices in Fig. 9(a) and (b) are estimated based on the prior-R inversion while neglecting the far-field500

correction. We complement these by a statistical estimate of the averaging kernels using 100 synthetic experiments with random

truth (see Appendix H2), shown in Fig. 9(c) and (d). Here, the far-field correction is applied as implemented in our processing

chain. While these statistical estimates reproduce all qualitative features in the averaging kernels, the matrix entries estimated

using synthetic experiments are generally lower. This is likely due to the far-field correction and indicates that deviations from

the prior emissions may be underestimated by our inversion. Importantly, both presented strategies for estimating the averaging505

kernels assume a perfect transport model. The real sensitivity of the posterior to the true emissions is therefore expected to be

lower.

5.6 Simulated transport error

In the following, we estimate methodological uncertainties and biases using synthetic experiments with a simulated transport

error. Each of our 12 transport ensemble members yields one prediction for the total CH4 concentrations from which we can510

generate pseudo-observations. We use these pseudo-observations for 12 inversion runs in which the true emissions are equal to

the prior emissions.

Figure 10 shows how emission estimates computed in this synthetic setup deviate from the synthetic truth with (Fig. 10 a) and

without far-field correction (b). The two inversion methods prior-R and posterior-R are shown as horizontal and vertical axis,

respectively. As expected, the posterior-R inversion generally yields higher emission estimates. Localized sources that cause515

a strong plume are underestimated by both methods, though the bias is reduced in the posterior-R inversion as predicted in

Sect. 2.5. Considering the average of prior-R and posterior-R inversion for the case with far-field correction, we find posterior

biases ranging from −9% for the Upper Silesian Coal Basin to +0.4% for natural plus LULUCF emissions in Germany. For

the total German emissions, the expected bias of −2% and the ensemble spread of −4% to 0% is well below the uncertainty

of the inversion results. Similar results for the case of modified true anthropogenic emissions are shown in Fig. F2.520

23

https://doi.org/10.5194/egusphere-2025-1464
Preprint. Discussion started: 15 May 2025
c© Author(s) 2025. CC BY 4.0 License.



0.875 0.900 0.925 0.950 0.975 1.000 1.025 1.050
scaling factor (prior-R inversion)

0.92

0.94

0.96

0.98

1.00

1.02

sc
al

in
g 

fa
ct

or
 (p

os
te

rio
r-R

 in
ve

rs
io

n) (a)
with far-field correction

0.8 0.9 1.0 1.1
scaling factor (prior-R inversion)

0.85

0.90

0.95

1.00

1.05

1.10 (b)
without far-field correction Germany

France (mainland)
Austria, Czechia
Belgium, Luxembourg
Spain, Portugal
UK, Ireland
Netherlands
Poland
Italy
Denmark
Switzerland
Upper Silesian Coal Basin
DE: agr.
DE: non-agr.
DE: natural + LULUCF

Figure 10. Bias in synthetic experiments with simulated transport uncertainty with (a) and without (b) far-field correction. Note the scale

difference between the two panels with scaling factors in (a) much closer to the true value of one. Pseudo-observations were generated from

the CH4 concentration simulated in 12 meteorological ensemble members. Symbols show the mean of inversion results relative to the prior,

obtained using either the prior-R (horizontal axis) or the posterior-R inversion method (vertical axis). Thin lines show the spread (minimum

to maximum) among the 12 inversions, and thick lines show the 2σ statistical uncertainty of the mean.

In the synthetic setup, the far field is perfect by construction and its correction can be switched off. For this case, Fig. 10(b)

shows a significantly larger spread of posterior values compared to the case with far-field correction. This large spread high-

lights the influence of transport errors on the inversion results. The far-field correction reduces deviations from the prior and

introduces a small bias towards lower fluxes. This bias is caused by the filtering of observations with overestimated far field

and possibly by the selection of observations for the construction of the correction field.525

6 Discussion

Our inversion system combines precise in situ observations, accurate a priori fluxes from national reporting, the ICON–ART

transport model at 6.5km resolution, and an ensemble-estimated transport uncertainty. We further rely on CAMS boundary

conditions and high-resolution meteorological fields from operational numerical weather prediction. This yields in general a

good agreement between the model prediction and filtered observations, allowing us robust emission estimates for countries530

with well-observed emissions, such as Germany. We compare top-down CH4 emission estimates to the reported German

inventory and its agriculture sector with enough accuracy to lay the technical foundations for a future long-term observation-

based national inventory verification. This section discusses our main results (Sect. 6.1), including a comparison with other

studies (Sect. 6.2). We elaborate the limitations of our approach (Sect. 6.3) and its potential for the development of observation-

based national inventory verification to inform climate policy (Sect. 6.4).535
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6.1 Key findings

Firstly, we find that our top-down CH4 emission estimates are significantly higher than reported for Germany. Secondly, we

identify the agriculture sector and possibly LULUCF and natural fluxes as the main source of this discrepancy. Thirdly, we

estimated the transport uncertainty using a meteorological ensemble. The same ensemble allowed us to simulate the effect of a

transport error on the inversion results, which we estimate to be 2% for the total German emissions.540

Fourthly, our study points to the relevant tuning parameters. The far-field correction significantly impacts the inversion

results, but the specific choices made in its setup have only minor or moderate effects. Switching on the far-field correction lets

us err slightly on the side of caution, i.e., our results will be biased towards the prior flux estimates. Without far-field correction,

on the other hand, we expect errors from wrongly projecting any boundary bias onto the fluxes. For the station observation

filtering (e.g., time window selection, outlier identification), we found a robust setting for our application because of sufficient545

observation coverage. However, this may become a problem for other applications in less well-observed circumstances. Tuning

the model–observation uncertainty parameters proved important, and thus we chose them cautiously to avoid overfitting.

6.2 Comparison to other methods

Our Eulerian approach with sectoral segregation differs from other studies on CH4 inversions for single countries, e.g., Henne

et al. (2016) for Switzerland and Ganesan et al. (2015) for the United Kingdom that use Lagrangian transport models. The latter550

both qualitatively attribute deviations from the inventory reporting to the agriculture sector by comparing the spatial and/or

temporal patterns in the posterior fluxes to sectoral a priori fluxes. A similar strategy for sectoral segregation based on spatial

flux patterns is followed by Varon et al. (2022) and analyzed by Cusworth et al. (2021). For deriving sector estimates, some

inversions assume a spatial correlation of gridded emissions within each sector (Rödenbeck et al., 2003; Meirink et al., 2008b;

Bergamaschi et al., 2010). Based on the same assumption, Steiner et al. (2024b) and Tenkanen et al. (2025) construct ensembles555

of perturbed a priori fluxes to distinguish natural and anthropogenic fluxes utilizing the CarbonTracker Data Assimilation Shell

(van der Laan-Luijkx et al., 2017). Notably, Tenkanen et al. (2025) avoid the lateral boundary problem by simulating transport

globally with nested zoom in Europe to estimate Finnish CH4 emissions on a coarse resolution of 1◦×1◦. In the present work,

we take the next step by validating sectoral emissions reported to UNFCCC and analyzing possible false attributions, making

use of a significantly higher model resolution.560

Our results are qualitatively in line with the discrepancy of top-down estimates and UNFCCC reporting for Germany and

the Benelux found in different regional inversions for the years 2018 and earlier (Petrescu et al., 2023; Bergamaschi et al.,

2022, 2018; Steiner et al., 2024b). Furthermore, it appears as a robust feature in our results that emissions from the UK plus

Ireland agree well with reported emissions, in line with Bergamaschi et al. (2022) for the year 2018. For the French emissions,

our inversion shows a tendency towards slightly higher emissions similar to Steiner et al. (2024b), whereas other inversions565

suggest significantly higher emissions (Petrescu et al., 2023; Bergamaschi et al., 2022).
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6.3 Limitations

Though simulating emissions and transport in a large domain, we can only provide reliable emission estimates for selected

countries (compare Fig. 5). Regions without notable uncertainty reduction and regions with known modeling difficulties do not

benefit from our model setup. In Scandinavia, we find strong wetland emissions with insufficiently modeled fine-scale spatial570

and temporal variability. Combined with only small signals from non-LULUCF anthropogenic emissions, this leads to a low

signal-to-noise ratio, which prevents conclusive results for Scandinavia. Furthermore, the synthesis inversion may be prone to

underestimating large localized sources due to transport errors. We quantified this effect (see Sect. 5.6) and reduced the bias

by introducing the posterior-R inversion as well as an additional model uncertainty.

Another limitation comes from the challenges for the regional flux inversion caused by biases in the lateral boundary con-575

ditions, motivating our far-field correction. The correction effectively reduces the influence of observations with low signal

from categorized emissions, while leaving observations with strong signals mostly unchanged. This makes the estimation of

well-observed emissions more robust. However, due to the selection of observations for the far-field correction, this correction

is more likely to increase the far field rather than decreasing it, leading to a bias towards lower emission estimates, as was

proven with synthetic experiments. We expect similar difficulties as long as the bias correction of the lateral boundaries is580

based on the same observations as the flux estimation. This highlights the difficulty of determining fluxes in a limited area

when concentrations at the lateral boundaries cannot be directly inferred from dedicated observations.

In our highly resolved transport simulation, every flux category is numerically expensive. Aiming to validate reported Ger-

man emissions, we could reduce the state space of the inversion to only 46 scaling factors with monthly time resolution. This

substantially limits the spatial and temporal variations that can be represented in the inversion. This approach is justified if the585

a priori fluxes already provide a realistic spatial distribution of all major CH4 sources within each flux category. While this may

be the case in Germany and neighboring countries, the constant scaling factors for large flux categories in more distant regions

may be oversimplified and could lead to less accurate results in these regions. Moreover, adjusting few degrees of freedom may

not be sufficient to obtain realistic flux estimates in regions with limited or highly uncertain information on a priori fluxes, such

as Scandinavia. The scaling method would further fail to correct zero prior fluxes (Kountouris et al., 2018). However, this is590

less of a problem for CH4, as inventories can collect where CH4-emitting activities are normally located, but emission factors

which translate the activities into emissions are generally not well known (Dammers et al., 2024).

When constructing the state space, we unevenly distributed the 46 degrees of freedom on our model domain – using 11

degrees of freedom for Germany and only four for mainland France plus Belgium and Luxembourg. But the choice of flux

categories affects the results and can lead to biases depending on the location of the observations (Kaminski et al., 2001). In595

our application, this effect is small because of the good observation coverage in Germany. Sensitivity tests with 5, 9 and 19

degrees of freedom in Germany (cases 503, 504, 506 in Table E1) indicate robust results for Germany and thereby confirm the

potential of the synthesis inversion when focusing on a well-observed region.

We exploit the sectoral discrimination of emission in a well-observed region as a key feature of our inversion method. This

relies heavily on an accurate spatial distribution and completeness of the a priori fluxes, which appears to be sufficient for the600
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major emitting sectors in Germany. A general problem in sector attribution is that sectors with large absolute uncertainty –

such as agriculture – may be falsely blamed for any change in total emissions when the observations do not clearly distinguish

the sectors (see Appendix G). By quantifying this effect in the averaging kernels (see Fig. 9), we confirmed that in Germany

agriculture can be distinguished from other anthropogenic emissions excluding LULUCF. Small sectors like natural plus LU-

LUCF fluxes could not be reliably distinguished from large sectors such as agriculture, and we therefore combined smaller605

sectors like waste and public power into the larger category “non-agr.”.

6.4 Implications for future research

We chose the synthesis inversion for the first application of our modular inversion system, but designed this framework to

be expandable to other inversion methods. For instance, most of the steps in the inversion can be applied with only minor

adjustments when replacing the flux categories by an ensemble of randomly perturbed surface fluxes, similar to Steiner et al.610

(2024b), or by grid cell clusters as used by Estrada et al. (2024). Such applications with a larger state space are limited by

the computational effort of the transport simulation, which is much higher than the computational effort of the inversion itself.

Similar to the inversion method, the far-field correction can be replaced by a different strategy for mitigating a boundary bias.

For example, one could construct the far field based on an ensemble of boundary concentrations.

Further possibilities of extension concern other observation types, including satellite data. Our Eulerian system allows in615

principle the handling of large observation datasets without prohibitive computational effort, albeit changes in the construction

and handling of R may be required when reaching & 105 observations per time window. This potential is leveraged by many

inversion systems that use Eulerian transport simulations (e.g., Varon et al., 2022; Meirink et al., 2008a; Bergamaschi et al.,

2013). The increasing availability of satellite data is especially interesting for constraining concentrations and emissions in less

observed regions, such as near the boundaries of our domain.620

We identified potentials and risks in separating sectors based on highly resolved spatial flux patterns. Extending this by

temporal profiles for a priori fluxes offers an untapped potential for improvement. Moreover, our inversion would benefit from a

priori emission ensembles reflecting the uncertainty in spatial and temporal distribution of the fluxes. Significant improvements

may become possible by distinguishing sectors at the observations using co-tracers such as ethane for fossil CH4 emissions

(Ramsden et al., 2022; Mead et al., 2024) or by distinguishing carbon isotopes (Basu et al., 2022; Thanwerdas et al., 2024;625

Chandra et al., 2024).

7 Conclusions

We presented a novel system for regional flux inversion designed to validate national CH4 emission reporting. Applying this

method to Central Europe in 2021 with a focus on Germany, we found a significant increase in emissions from Germany and

the Benelux. Careful estimation of posterior uncertainties revealed that total German posterior emissions are (32±19)% higher630

than the anthropogenic emissions reported to the UNFCCC (submission 2024). This increase is most likely due to emissions

from the agriculture sector, possibly with contributions from LULUCF and natural sources. Our results were confirmed by an
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exhaustive range of sensitivity tests and by validation with independent observation sites. Synthetic experiments with known

truth verified the ability to distinguish emission sectors in Germany.

Methodological comparison to other regional inversion systems highlights the advantages of our method for distinguishing635

emission sectors and fitness for purpose for validation of national emission estimates. The qualitative gap between UNFCCC

reporting and our estimates for Germany and the Benelux is consistent with earlier works (Petrescu et al., 2023; Bergamaschi

et al., 2022, 2018; Steiner et al., 2024b). We complement these studies by providing an emission estimate for the German

agriculture sector that can be directly compared to the national reporting, revealing a significant mismatch.

In this study we only presented the first application of an extensible, novel inversion system. Future developments may640

include the integration of satellite data, the incorporation of temporal profiles, a more comprehensive treatment of boundary

conditions and flux uncertainties using ensemble methods, and an extension of the state space. The close connections to

operational numerical weather prediction – especially in the underlying transport simulation – and the modular design establish

the potential for long-term operational support of national emissions reporting.

Data availability. A collection of model data, inversion results, and data for reproducing most figures in this work is available at https:645

//doi.org/10.5281/zenodo.15083480 (Bruch et al., 2025).

Appendix A: Extended data tables and figures
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Figure A1. Prior and posterior emissions (a) and scaling factors (b) for all flux categories, ordered by prior emissions. Horizontal lines

indicate 95% confidence intervals. See Fig. 3 for the geographical definition of the flux categories and Fig. 4 for the resulting map of scaling

factors. (a) If no sector is explicitly specified, the flux categories contain all anthropogenic fluxes excluding LULUCF. For flux categories

marked with an asterisk, the inversion does not reduce the absolute uncertainty. Thus, reliable information is only gained by our inversion

for flux categories without asterisk (see Sect. 4.5). Red color of the category names indicates a statistically significant increase of emissions.

(b) Scaling factors are the raw results of our inversion, though here they are already combined for the whole year. The posterior scaling factor

is defined as the mean of the methodological uncertainty range indicated by brown boxes.
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Figure A2. (a–c) Seasonal cycle when using only observations from stations that were active during the whole year. We select those stations

and sampling heights, for which we used at least two data points per day on at least 20 days of each month in 2021 in our main inversion.

This yields 27 stations shown in (d) with 8.3 · 104 data points for the inversion (step 5 in Table 2), compared to 50 stations with 1.29 · 105

data points in the reference case (compare Fig. 6). Colored areas show the posterior uncertainties (95% confidence intervals), which were

computed without excluding individual stations from the inversion and are therefore smaller than in Fig. 6. Prior emission rates are shown as

dotted lines with small markers.
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Figure A3. Seasonal cycle in observations at stations with elevation below 500m above sea level (a, b) and above 1000m (c, d), supple-

mentary to the discussion in Sect. 5.2. Thin blue lines represent the 10% quantile of each month, station, and sampling height for (a, c)

observations and (b, d) model predictions (prior). The 10% quantile is chosen to minimize the effect of local pollution. Thick black lines

indicate the mean of all selected stations and sampling heights. Thick red lines in (b) and (d) show the 10% quantile of the modeled far-field

concentration. The flatland stations show a pronounced seasonal cycle with minimum in summer for both model and observations. This cycle

is dominated by the contribution of the far field. The mountain stations have a weaker seasonal cycle.
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Table A1. Observation stations from the European Obspack (ICOS RI et al., 2024). Column 6 (“mountain”) characterizes the stations as

high mountains, small mountains, and other stations. This serves as a reference for computing the station height in the model and for the

daily time window. We indicate the sampling heights used in the inversion (column 7) and mark those sampling heights with an asterisk that

were used in Fig. A2 (sensitivity test 602). Column 8 indicates times in which the station was excluded due to modeling problems. Column 9

(“inflation”) defines the factor fi by which the estimated uncertainty is multiplied when constructing the uncertainty matrix R.

Code Name Coun-

try

ICOS

class

Elevation

(m)

Mountain Sampling

heights (m)

Limitations Infla-

tion

BIK Białystok PL – 183 no 90, 180, 300 2

BIR Birkenes NO 2 219 no 75 excl. Apr–Aug 3

BIS Biscarrosse FR – 73 small 47* 2

BRM Beromunster CH – 797 no 72, 132, 212 2

BSD Bilsdale UK – 382 no 108, 248 2

CBW Cabauw NL 1 0 no 67, 127*, 207* 2

CMN Monte Cimone IT 2 2165 high 8 2

CRA Centre de Recherches

Atmosphériques

FR – 600 no 60* 2

CRP Carnsore Point IE – 9 no 14 2

ERS Ersa FR – 533 small 40 3

FKL Finokalia GR – 250 small – excluded –

GAT Gartow DE 1 70 no 132*, 216*, 341* 2

HEI Heidelberg DE – 113 no 30* 3

HEL Helgoland DE 2 43 no 110* 2

HPB Hohenpeissenberg DE 1 934 small 50, 93*, 131* 2

HTM Hyltemossa SE 1 115 no 70, 150 2

HUN Hegyhátsál HU 2 248 no 82, 115 incl. Mar–Oct 3

IPR Ispra IT 2 210 no – excluded –

JFJ Jungfraujoch CH 1 3571.8 high 13.9 2

JUE Jülich DE 2 98 no 120* 3

KAS Kasprowy Wierch PL – 1987 high 7* 2

KIT Karlsruhe DE 1 110 no 60*, 100*, 200* 2

KRE Křešín u Pacova CZ 1 534 no 50, 125, 250 2

LHW Laegern-Hochwacht CH – 840 small 32 3

LIN Lindenberg DE 1 73 no 98 2

LMP Lampedusa IT 2 45 no – excluded –
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Code Name Coun-

try

ICOS

class

Elevation

(m)

Mountain Sampling

heights (m)

Limitations Infla-

tion

LMU La Muela ES – 571 no 79 2

LUT Lutjewad NL 2 1 no 60 excl. Nov–Dec 2

MHD Mace Head IE – 5 no 24* 2

MLH Malin Head IE – 22 no 47 2

NOR Norunda SE 1 46 no 58*, 100* 2

OHP Observatoire de Haute

Provence

FR – 650 no 50, 100 2

OPE Observatoire pérenne

de l’environnement

FR 1 390 no 50*, 120* 2

OXK Ochsenkopf DE 1 1022 small 90, 163 2

PAL Pallas FI 1 565 no 12* 2

PDM Pic du Midi FR – 2877 high 28 2

PRS Plateau Rosa IT 2 3480 high 10 2

PUI Puijo FI 2 232 small 84* 2

PUY Puy de Dôme FR 2 1465 small 10* 2

RGL Ridge Hill UK 2 207 no 90* 2

ROC Roc’h Trédudon FR – 362 no 25, 80, 140 2

SAC Saclay FR 1 160 no 60*, 100* 2

SMR Hyytiälä FI 1 181 no 67.2*, 125* 2

SSL Schauinsland DE 2 1205 small 12, 35 2

STE Steinkimmen DE 1 29 no 127*, 187*, 252* 2

SVB Svartberget SE 1 269 no 85*, 150* 2

TAC Tacolneston UK – 64 no 54*, 100*, 185* 2

TOH Torfhaus DE 2 801 small 76*, 110*, 147* 2

TRN Trainou FR 2 131 no 50*, 100*, 180* 2

UTO Utö - Baltic sea FI 2 8 no 57* 2

WAO Weybourne UK 2 17 no 10* 2

WES Westerland DE 2 12 no 14 2

ZSF Zugspitze DE 2 2666 high 3* 2

650
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Figure B1. Statistical evaluation of the far-field correction. Considering all data points used in the inversion (steps 5–8 in Table 2), histograms

of the far-field correction (a) and its time gradient (b) show that the correction is usually in the range ±10ppb and can vary by a few ppb

per day. For each station and month, we compute the RMS and the mean (or bias). Histograms combining these values for all stations and

months are shown in (c) and (d). The broad distribution of the RMS values indicates significant differences among the stations. The bias

shows a tendency towards positive values, which implies that the far-field correction tends to increase the modeled CH4 concentration. This

increase in model concentrations leads to a decrease in emission estimates.

Appendix B: Far-field correction

This appendix provides details for the far-field correction introduced in Sect. 2.2. We correct the computed far field by a smooth

field that may only vary on temporal scales & 16h and horizontal scales & 320km. This correction field is determined using

all data points where the cumulated signal of all flux categories is at most 20ppb, the total concentration due to all fluxes in the

domain – including natural and uncategorized fluxes – is at most 50ppb, and natural plus LULUCF fluxes contribute at most655

20ppb. These criteria aim to select only measurements of sufficiently clean air for the far-field correction. Figure B1 shows

that this correction lies typically in the range ±10ppb and has a bias of few ppb towards higher concentrations.

The far-field correction is realized as a Kalman smoother on the selected data points. Consider the vector of all model

predictions x, which is aligned with the observation vector y. By P we denote the projector selecting those data points that

shall be used to determine the far-field correction. We aim to find a correction vector c aligned with x and y that minimizes660

argmin
c

{
(x+ c− y)>P>

(
PR̃P>

)−1
P (x+ c− y) + c>P>

(
PC̃P>

)−1
Pc
}
, (B1)

where R̃= 16I is a diagonal matrix and C̃ is an unnormalized (i.e. C̃ii = 1 for all i) Gaussian localization matrix with standard

deviations 16h (time), 319km (horizontal) and 1km (vertical). The matrix C̃ ensures that the correction field c is smooth on

these scales. For the under-determined Eq. (B1) we use the solution

c= C̃P>
[
P (C̃ + R̃)P>

]−1

P (y−x). (B2)665

To prove that Eq. (B2) solves Eq. (B1), we use that Eq. (B1) is a quadratic form and compute its gradient with respect to c:

0 != 2P>
(
PR̃P>

)−1
P (x+ c− y) + 2P>

(
PC̃P>

)−1
Pc. (B3)
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This can be solved by requiring

0 !=
(
PR̃P>

)−1
P (x+ c− y) +

(
PC̃P>

)−1
Pc (B4)

=
[(
PR̃P>

)−1 +
(
PC̃P>

)−1
]
Pc+

(
PR̃P>

)−1
P (x− y) (B5)670

=⇒ Pc=
[
1 +PR̃P>

(
PC̃P>

)−1
]−1

P (y−x) (B6)

= PC̃P>
[
P (C̃ + R̃)P>

]−1

P (y−x). (B7)

Appendix C: Chi-square analysis

In this appendix, we provide the mathematical details for the χ2/Ndof analysis used in Sect. 4.2. The aim of this analysis is

to quantify whether the data used in the inversion agree with the assumed uncertainties. The inversion formally relies on the675

assumption of Gaussian probability distributions of the a priori scaling factors (error covariance matrix B) and the model–

observation mismatch (R). For the model–observation mismatch µ= y−Hsprior−xff this yields the probability

P (µ= y−Hsprior−xff)

=
∫

s

P (y =Hs+µ+xff)dPs (C1)

τ=s−sprior

∝
∫

τ

exp
[
− 1

2τ
>B−1τ − 1

2 (Hτ +µ)>R−1(Hτ +µ)
]
dNdofτ (C2)680

∝ exp
{
− 1

2µ
>[R−1−R−1H(B−1 +H>R−1H)−1H>R−1

]
µ
}

(C3)

=: exp
(
− 1

2µ
>Qµ

)
. (C4)

Such high-dimensional Gaussian probability distributions share various useful properties. Here, we use that when sampling

P (µ) it is very likely to find µ such that χ2 ≡ µ>Qµ≈Ndof where Ndof denotes the number of degrees of freedom, which

is the dimension of vector µ. In our case, Ndof ∼ 104 is the number of observation data points used per one-month time685

window. In the limit of large Ndof, one can approximate P (χ2)∼N (Ndof,2Ndof) (Gaussian distribution with mean Ndof and

variance 2Ndof). Thus, in an idealized setup we expect that χ2/Ndof = 1±0.03 (95% confidence interval). Values & 1.05 imply

that uncertainties were underestimated and χ2/Ndof . 0.95 indicates that uncertainties were too high. However, in reality we

may have biases and other problems such that the assumption of a Gaussian uncertainty in the model–observation mismatch

becomes invalid and χ2/Ndof < 1 does not necessarily imply that uncertainties should be reduced.690

Appendix D: Posterior-based model uncertainty estimate

We estimate the model uncertainty using a meteorological ensemble. This leads to a dependence of the model uncertainty

on the fluxes. Stronger emissions lead to stronger gradients in the model concentrations and to higher uncertainties in the
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concentrations due to transport errors. In this appendix, we explain how the uncertainty can be estimated based on the posterior

fluxes. As stated in Sect. 2.5, this can reduce the bias for localized emissions.695

D1 Optimization problem for self-consistent model uncertainties

In Sect. 2.4, we defined the uncertainty matrixR using the concentrations xmi at observation data points i predicted for different

ensemble members m. When using the posterior-R inversion method, these concentrations should be consistent with the

posterior emissions. In this case, xmi and thereby R depend on the scaling factors s of the emissions. The inversion minimizes

the cost function Eq. (1) to optimize the agreement with the observations and the prior scaling factors (see Sect. 2.3). For a700

flux-dependent R matrix, this optimization problem reads

spost = argmin
s

L(s), (D1)

L(s) = 1
2 (y−Hs−xff)>R(s)−1(y−Hs−xff) + 1

2 (s− sprior)B−1(s− sprior). (D2)

By minimizing L(s) and approximating it in the form L(s) = 1
2 (s− spost)B−1

post(s− spost) + constant, we obtain the posterior

scaling factors spost and the posterior error covariance matrix Bpost.705

The minimization problem argminsL(s) can be solved numerically. A quick convergence of a minimization algorithm

can be achieved by making use of the analytically computed gradient and Hesse matrix of L(s). We used SciPy’s “trust-

exact” implementation of a trust-region method (Virtanen et al., 2020; Moré and Sorensen, 1983; Conn et al., 2000). Within

each iteration, the incomplete LU decomposition (Li et al., 1999; Li and Shao, 2011) of the sparse matrix R(s) is the most

computationally expensive task when the number of observations is large.710

D2 Reduced ensemble

When using a priori scaling factors to estimate the model uncertainty, we need only the total concentration xmi (sprior) for each

ensemble member. Thus, only a single tracer field is required in the ensemble transport simulation. To fully compute xmi (s) as

function of s, the tracer categories need to be distinguished for each ensemble member, resulting in > 40 tracer fields in the

ensemble simulation. To avoid wasting numerical resources, we chose to approximate xmi (s) by only a few tracer fields, using715

additional information from the deterministic model run which distinguishes all tracer fields.

From the deterministic model run we know the operator H mapping scaling factors s to a model prediction Hs+xff for

the concentrations. For ensemble member m we would ideally know Hm and xff,m yielding a model prediction Hms+xff,m.

To avoid calculating the full matrix Hm, we group the flux categories into groups {g} and denote by Pg the projector of

scaling vectors s on the subspace spanned by the flux categories in group g. Using the total concentration from group g,720

xmgi = xmi (Pgsprior), we estimate the full dependence on the scaling factors:

xmi (s)≈
∑

g

(HPgs)i
(HPgsprior)i

xmgi +xff,m
i . (D3)
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Thus, we compute the transport ensemble for a few tracer groups and estimate xm(s) for arbitrary s by using the ratios of tracer

fields within the tracer groups from the deterministic run. Using the approximation in Eq. (D3), we estimate the posterior model

uncertainties with only five tracer fields in an ensemble of 12 transport simulations:725

1. far field (initial and lateral boundary conditions)

2. total anthropogenic fluxes

3. total natural fluxes

4. total anthropogenic fluxes from Germany with lifetime five days

5. total anthropogenic fluxes from outside Germany with lifetime five days730

Appendix E: Sensitivity tests

Table E1 provides an overview of the sensitivity tests. For this table we quantify the impact of a parameter variation on the

inversion results by the following, heuristic metric: Consider a fixed region, sector and inversion time window with poste-

rior fluxes F . The normalized deviation from the reference inversion is defined as ∆ = 2|F−F ref.|
F ref. upper−F ref. lower , where F ref. upper and

F ref. lower denote the bounds of the posterior uncertainty range. The overall impact is computed as the arithmetic mean of ∆735

over the (usually monthly) time windows and a selection of regions and sectors. In the regions UK+Ireland, France, Italy,

Poland, Austria+Czechia, Netherlands, Belgium+Luxembourg, Switzerland, and Denmark we consider only total fluxes with-

out distinguishing sectors. In Germany we include ∆ for the total fluxes in four different regions (north, east, south, west)

and additionally for national total fluxes distinguishing the three sectors agriculture, natural plus LULUCF, and other sectors.

Effectively, this counts all fluxes in Germany twice and gives them more weight in the impact metric for Table E1.740
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Table E1. Sensitivity tests for estimating the robustness of the inversion results with respect to tuning parameters. The impact column

quantifies the deviation of the inversion results relative to the uncertainties and shall qualitatively indicate the relevance of the modified

parameters (see explanation in the text). An impact of 100% means that the average deviation from the reference case is as large as the

posterior uncertainty. Overall, we see that most test have an impact of . 15%, implying that the effect on the inversion results is small

compared to the uncertainty in the reference case. See also Fig. E1 for the posterior emissions in the sensitivity tests.

ID Test case Explanation Impact

0 reference as explained in Sect. 4

Model equivalent calculation

100 station elevation for mountain stations treat all mountain stations like small mountains when computing

model heights, as proposed by Brunner et al. (2012); Henne et al.

(2016); Bergamaschi et al. (2022)

5.3 %

101 no time averaging average only over 1 h instead of over 3 h 13 %

filtering observations

200 fewer hours of day use time window 12 h–16 h (0 h–4 h for high mountains) 11 %

201 all hours of day no filtering by time of day, increase uncertainty inflation by factor 1.5 38 %

202 one sampling height per station use only highest sampling height of each station 16 %

203 no filtering based on wind include data points with low wind speed 12 %

204 low min. wind speed minimum wind speed: 1.11ms−1 9.4 %

205 high min. wind speed minimum wind speed: 3.0ms−1 11 %

206 low max. model-obs. mismatch discard when absolute deviation exceeds 120ppb, or model far field

minus observation exceeds 12ppb

3.5 %

207 high max. model-obs. mismatch discard when absolute deviation exceeds 300ppb, or model far field

minus observation exceeds 30ppb

1.3 %

208 low max. data point influence increase uncertainty if |µi|> 2.5
√
Rii in Sect. 2.4.1 11 %

209 high max. data point influence increase uncertainty if |µi|> 4
√
Rii in Sect. 2.4.1 15 %

uncertainty / error covariance matrix R (model and observations)

300 no plume uncertainty no extra uncertainty due to point-like emissions 0.27 %

301 high plume uncertainty uncertainty due to point-like emissions: useR′ij+0.5ρ2
i δij in Sect. 4.2 0.56 %

302 low uncertainty inflation uncertainty inflation by (1.5, 2.25) instead of (2, 3) 8.6 %

303 high uncertainty inflation uncertainty inflation by (3, 4.5) instead of (2, 3) 13 %

304 small horizontal error correlation scale scale 191km instead of 319km 6.0 %

305 large horizontal error correlation scale scale 510km instead of 319km 8.3 %

306 small vertical error correlation scale scale 400m instead of 1km 2.3 %

307 short error correlation time scale scale 4 h instead of 6 h 2.5 %

308 long error correlation time scale scale 10 h instead of 6 h 2.8 %
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ID Test case Explanation Impact

309 low uncorrelated uncertainty σconst = 5ppb instead of 10ppb in Eq. (2) 21 %

310 high uncorrelated uncertainty σconst = 20ppb instead of 10ppb in Eq. (2) 22 %

far-field correction

400 no far-field correction 97 %

401 weak far-field correction R̃= 100I instead of 16I in Eq. (B1) 16 %

402 strong far-field correction R̃= 2.78I instead of 16I in Eq. (B1) 9.2 %

403 small horiz. far-field correction scale scale 191km instead of 319km 6.8 %

404 large horiz. far-field correction scale scale 510km instead of 319km 4.5 %

405 short far-field correction time scale time scale 10 h instead of 16 h 3.7 %

406 long far-field correction time scale time scale 28 h instead of 16 h 3.8 %

407 long far-field correction time scale time scale 48 h instead of 16 h 7.1 %

408 low vertical far-field correction scale scale 400m 0.92 %

409 strict far-field observation selection max. signal 10ppb, max. due to natural fluxes 10ppb 20 %

410 loose far-field observation selection max. signal 30ppb, max. due to natural fluxes 30ppb, max. uncate-

gorized 80ppb

14 %

411 unrestricted iterative far-field correction max. signal 50ppb, no other selection criteria; C̃ localization scales

10 h, 191km; iterate far-field correction and inversion 3 times

30 %

412 low correction uncertainty use Rij +0.25|cicj |C̃ij in Sect. 4.2 2.5 %

413 high correction uncertainty use Rij +1.0|cicj |C̃ij in Sect. 4.2 4.2 %

414 uncorrelated correction uncertainty use Rij +2c2i δij instead of Rij +0.5|cicj |C̃ij in Sect. 4.2 3.6 %

a priori scaling factor error covariance matrix B

500 low prior uncertainty 1σ prior uncertainty for most areas 0.25, remote and plume 0.2, sector-

resolved 0.33

14 %

501 high prior uncertainty in Germany 1σ prior uncertainty such that total sector emissions in Germany have

uncertainty 0.6 for each distinguished sector

8.6 %

502 uncorrelated prior, B is diagonal 1σ prior uncert. in sector categories in Germany: 0.75 6.3 %

503 no sector distinction in prior four regions in Germany with uncorrelated 1σ prior uncertainty of 0.4 7.7 %

504 low spatial resolution in Germany two initially uncorrelated regions in Germany 15 %

506 distinguish 5 sectors in Germany see Appendix I 2.1 %

station selection

601 stations covering ≥ 10 days each month use 35 of 50 stations 13 %

602 stations covering ≥ 20 days each month use 27 of 50 stations as detailed in Fig. A2 33 %

inversion time windows

701 2 month inversion window 12 %

702 3 month inversion window 18 %
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Figure E1. Posterior emissions and uncertainties of selected countries and German sectors for all sensitivity tests. Thin horizontal lines

indicate the posterior of the reference case 0. Vertical lines show uncertainties (95% confidence intervals) that are not extended by excluding

stations. The individual tests are listed in Table E1. One can clearly see the strongest deviations for cases 400 (no far-field correction),

whereas all other test cases only lead to changes within the uncertainty ranges.

Appendix F: Additional synthetic experiments

In this appendix, we present synthetic experiments evaluating the response of the inversion system to a bias affecting all745

observations, noise, and all fluxes scaled by a constant factor in the synthetic truth. The posterior emissions for some well-

defined scenarios are shown in Fig. F1. In the first scenarios, we shift all pseudo-observations by−5ppb (case 1 in Fig. F1) and

+5ppb (case 2). This shift is mostly compensated by the far-field correction with monthly averages of±2.75ppb to±3.8ppb,

the sign depending on the scenario. Due to this correction, the effect on the German emissions remains within the posterior

uncertainty. We also test the effect of correlated and uncorrelated Gaussian noise of standard deviation 5ppb added to the750

observations (cases 10–12), finding that the effect on the posterior emissions is small compared to the posterior uncertainties.

The correlated Gaussian noise is a 3d Gaussian random field in flat (longitude, latitude, time) coordinates with a lower cutoff

for fluctuations on scales . 2.5◦ (horizontal) and . 12 days (time) such that it acts as a slowly varying random bias. The RMS

of the noise is normalized to 5ppb.

Next, we test the effect of an underestimation or overestimation of all emissions. In case 20 of Fig. F1, all natural and755

LULUCF fluxes are reduced by 40% in the truth, and cases 21 and 22 change all anthropogenic emissions excluding LULUCF

by −20% and +20%, respectively. In all cases, the posterior emissions follow the truth and remain compatible with the

synthetic truth within the uncertainties. In Germany, we find that the agriculture follows the scaled emissions stronger than the

other sectors (see Sect. 5.5.2 and Appendix G). The same effect is observed when repeating the case of increased anthropogenic

emissions with simulated transport uncertainty. Figure F2 shows how results of the two inversion methods deviate from the760

synthetic truth of 20% increased anthropogenic emissions. Agriculture emissions from Germany are almost correct in the
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   ID Explanation
00 reference case
01 global bias −5 ppb
02 global bias +5 ppb
10 uncorrelated noise (5 ppb)
11 spatially and temporally correlated noise (5 ppb)
12 correlated + uncorrelated noise
20 natural + LULUCF fluxes reduced by 40 %
21 anthrop. fluxes excl. LULUCF reduced by 20 %
22 anthrop. fluxes excl. LULUCF increased by 20 %
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Figure F1. Posterior emissions of selected countries and German sectors for synthetic experiments. Thin horizontal lines indicate the truth.

Vertical lines show uncertainties (95% confidence intervals) that are not extended by excluding stations.
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Figure F2. Bias in synthetic experiments with simulated transport uncertainty when all anthropogenic emissions are increased by 20%. Note

the different scales of both axes. The markers show the posterior emissions relative to the truth for selected regions and sectors, averaged

over 12 inversion runs with different simulated transport uncertainty. As in Fig. 10, the posterior-R inversion yields higher emissions than

the prior-R inversion.

posterior whereas all other shown national emission estimates – with the exception of Switzerland – are underestimated in the

posterior. Here, underestimated emissions are expected because the prior is underestimated compared to the synthetic truth.

Appendix G: Relevance of absolute prior uncertainty in sector attribution

When observations can detect a change in total emissions but cannot distinguish between different emission sectors, the sector-765

resolving inversion will change the sectoral distribution based on the prior uncertainties. To understand this problem qualita-
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tively, we consider the worst case: We assume that all sectors are uncorrelated in the prior but 100% spatially correlated such

that they cannot be distinguished in the inversion. The a priori probability for an emission vector e of sector emissions ei is

P (e)∝ exp

[
− 1

2

∑

i

(ei− eprior
i )2σ−2

i

]
, (G1)

where σi denotes the a priori standard deviation of ei. The inversion will yield a result for the total emissions epost
tot that770

maximizes the probability P (e) when including information from the observations. But by assumption, these observations do

not distinguish between sectors such that Eq. (G1) remains valid. We thus obtain the posterior emissions of the sectors by

maximizing Eq. (G1) with the constraint
∑
i ei = epost

tot . By introducing a Lagrange multiplier, one can show3 that this yields

ei− eprior
i = ασ2

i , α=
epost

tot − eprior
tot∑

iσ
2
i

. (G2)

This shows that sectors with larger absolute a priori uncertainty are disproportionally stronger corrected. Applied to our emis-775

sion estimates for Germany, this implies that if the observations were unsuitable for distinguishing sectors, the inversion would

attribute up to 95 % of the changes in total fluxes to the agriculture sector, which is responsible for 69 % of the total a priori

emissions. Fortunately, this worst case scenario is not realistic because the observations do contain information on the different

sectors as indicated e.g. by Figs. 8 and 9.

Appendix H: Averaging kernel matrices780

As introduced in Sect. 5.5.2, the averaging kernel matrices Aemis and Ascaling factors estimate the change in the posterior when

changing the truth, Aemis = ∂epost/∂etruth where e denotes the vector of emissions. Here, we summarize how these matrices are

estimated using either the prior and posterior error covariance matrices B and Bpost, or the statistics from inversion runs with

synthetic truth.

H1 Analytic estimate using error covariance matrices785

We first estimate the sensitivity of the posterior scaling factor to the true emissions under the assumption that the transport

model, far field, and the flux pattern within each flux category are perfect. Under these idealized assumptions, the model–

observation mismatch is µ= y−Hsprior−xff =H(struth− sprior) where struth denotes the true scaling factors. Our prior-R

inversion will now maximize

P (s)∝ exp
[
− 1

2 (s− struth)>H>R−1H(s− struth)− 1
2 (s− sprior)>B−1(s− sprior)

]
(H1)790

∝ exp
[
− 1

2 (s− spost)>B−1
post(s− spost)

]
. (H2)

This yields spost = sprior+A(struth−sprior) with the averaging kernelA= I−BpostB
−1 andB−1

post =H>R−1H+B−1 (Rodgers,

2000). Knowing B and Bpost, we can compute the averaging kernel to estimate how the posterior scaling factors depend on the

true scaling factors.

3We define L(e,λ) =− 1
2

∑
i(ei− e

prior
i )2σ−2

i +λ(e
post
tot −

∑
i ei) and require ∂L

∂ei
= 0, ∂L

∂λ
= 0.
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Figure I1. Averaging kernel matrices of German sector emissions when trying to distinguish sectors waste, public power and other, in the

same representation as in Fig. 9(a)–(b). Panel (a), third row, shows that increasing true emissions in any sector is expected to cause higher

posterior agriculture emissions.

H2 Statistical estimate using synthetic experiments795

We aim to estimate the sensitivity of posterior scaling factors ξ := spost−sprior to changes in the synthetic truth ζ := struth−sprior.

Given a sample of N realizations {ξn}n and {ζn}n, we aim to find the scaling factor averaging kernel matrix A that solves

A= argmin
A′

N∑

n=1

‖ξn−A′ζn‖2 . (H3)

For ‖x‖2 =
∑
ix

2
i , differentiation by A′ij yields 0 =

∑N
n=1 ζ

n
j (ξn−Aζn)i for all i, j and thereby

A= ΞZ−1, Ξij =
N∑

n=1

ξni ζ
n
j , Zij =

N∑

n=1

ζni ζ
n
j . (H4)800

Equation (H4) was used to produce panels (c) and (d) of Fig. 9.

Appendix I: Attempt to distinguish five sectors in Germany

Our setup for the transport simulation was designed to separte five sectors in Germany: agriculture, natural plus LULUCF,

waste, public power, and the sum of all other sectors (“other”). We test the separation of these sectors in sensitivity test 506

(Table E1 and Fig. E1) and find no notable changes in the posterior emissions compared to our reference setup, in which we805

combined waste, public power, and other into one larger sector “non-agr.”. However, the uncertainties and the averaging kernels

change considerably. We assume an a priori 2σ uncertainty of ±100% for each sector-resolving flux category. Thus, splitting

the total fluxes in more uncorrelated flux categories reduces the a priori uncertainty of the total fluxes.

Figure I1 shows the averaging kernel matrices (introduced in Sect. 5.5.2 and Appendix H) for the inversion separating five

sectors. These matrices indicate that waste, public power, and “other” cannot be distinguished: The corresponding columns810
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Fig. I1(a) are approximately equal. Thus, trying to distinguish these sectors does not yield any additional information. By

comparing the row and column for “non-agr.” to Fig. 9, we identify drawbacks of the attempt to distinguish smaller sectors.

When trying to distinguish five sectors, the false attribution of emissions to the agriculture sectors is more severe than when

distinguishing only three sectors (48% compared to 28%). Consequently, the expected error reduction in the combined non-

agriculture sectors (excluding natural plus LULUCF) is better when considering only three sectors. Qualitatively, this is what815

we expect from Appendix G for cases where the observations are insufficient to distinguish the considered sectors.
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